О МАТЕМАТИЧЕСКОЙ ДИАГНОСТИКЕ (ЛИНЕЙНАЯ МОДЕЛЬ)*

В. Н. Малозёмов

Е. К. Чернэуцану

malv@math.spbu.ru

katerinache@yandex.ru

17 апреля 2010 г.

В докладе анализируются основные результаты известной работы [1].

 $\mathbf{1}^{\circ}$. Пусть в пространстве \mathbb{R}^n заданы два конечных множества

$$\mathcal{A} = \{a_i\}_{i=1}^m$$
 и $\mathcal{B} = \{b_j\}_{j=1}^k$.

Эти множества называются *строго отделимыми*, если существует вектор $v \in \mathbb{R}^n$, такой, что

$$\min_{i \in 1:m} \langle v, a_i \rangle > \max_{j \in 1:k} \langle v, b_j \rangle. \tag{1}$$

ЛЕММА 1. Множества \mathcal{A} и \mathcal{B} строго отделимы тогда и только тогда, когда найдутся вектор $w \in \mathbb{R}^n$ и число γ со свойствами

$$\langle w, a_i \rangle \geqslant \gamma + 1$$
 $npu \ scex \ i \in 1 : m,$
 $\langle w, b_j \rangle \leqslant \gamma - 1$ $npu \ scex \ j \in 1 : k.$ (2)

Доказательство. То, что из (2) следует (1) с v=w, очевидно. Проверим обратное заключение. Обозначим

$$d = \min_{i} \langle v, a_i \rangle - \max_{j} \langle v, b_j \rangle, \quad w = (2/d)v,$$
$$\gamma = \frac{1}{2} \left[\min_{i} \langle w, a_i \rangle + \max_{j} \langle w, b_j \rangle \right].$$

Тогда

$$\min_{i} \langle w, a_{i} \rangle - \max_{j} \langle w, b_{j} \rangle = 2,$$

$$\min_{i} \langle w, a_{i} \rangle = 2\gamma - \max_{j} \langle w, b_{j} \rangle = 2\gamma + \left(2 - \min_{i} \langle w, a_{i} \rangle\right),$$

$$\max_{j} \langle w, b_{j} \rangle = 2\gamma - \min_{i} \langle w, a_{i} \rangle = 2\gamma - \left(2 + \max_{j} \langle w, b_{j} \rangle\right).$$

Последние два соотношения равносильны (2).

^{*}Семинар по дискретному гармоническому анализу и геометрическому моделированию «DHA & CAGD»: http://www.dha.spb.ru/

 2° . Рассмотрим экстремальную задачу

$$\frac{1}{m} \sum_{i=1}^{m} \left(-\langle w, a_i \rangle + \gamma + 1 \right)_+ + \frac{1}{k} \sum_{j=1}^{k} \left(\langle w, b_j \rangle - \gamma + 1 \right)_+ \to \min_{w, \gamma}. \tag{3}$$

Здесь $(u)_+ = \max\{0, u\}$. Задача (3) эквивалентна следующей задаче линейного программирования

$$\frac{1}{m} \sum_{i=1}^{m} y_i + \frac{1}{k} \sum_{j=1}^{k} z_j \to \min,$$

$$\langle w, a_i \rangle - \gamma + y_i \geqslant 1, \quad i \in 1 : m;$$

$$-\langle w, b_j \rangle + \gamma + z_j \geqslant 1, \quad j \in 1 : k;$$

$$y_i \geqslant 0, \quad i \in 1 : m; \quad z_j \geqslant 0, \quad j \in 1 : k.$$
(4)

Множество планов задачи (4) непусто (можно взять, например, $w = \mathbb{O}$, $\gamma = 0$, $y_i \equiv 1$, $z_j \equiv 1$) и целевая функция ограничена снизу нулём. Значит, задача (4) имеет решение. По эквивалентности и у задачи (3) существует решение.

Обозначим через μ минимальное значение целевых функций в задачах (3) и (4). Очевидно, что $\mu \geqslant 0$. Из определений следует такое утверждение.

ПРЕДЛОЖЕНИЕ 1. Равенство $\mu = 0$ выполняется тогда и только тогда, когда найдутся вектор $w \in \mathbb{R}^n$ и число γ со свойствами (2).

При выполнении соотношений (2) говорят, что гиперплоскость

$$\langle w, x \rangle = \gamma \tag{5}$$

строго разделяет множества \mathcal{A} и \mathcal{B} .

3°. Обратимся к случаю $\mu > 0$.

ПРЕДЛОЖЕНИЕ 2. При $\mu > 0$ у задачи (3) существует решение $\{w, \gamma\}$ с $w \neq \mathbb{O}$.

По решению задачи (3) формируется гиперплоскость (5), которая npuближенно разделяет множества \mathcal{A} и \mathcal{B} .

Мы будем доказывать предложение 2 с помощью эквивалентной задачи (4).

ЛЕММА 2. Для того чтобы задача (4) имела решение $c w = \mathbb{O}$, необходимо и достаточно, чтобы совпадали средние точки множеств \mathcal{A} и \mathcal{B} , то есть чтобы

$$\frac{1}{m} \sum_{i=1}^{m} a_i = \frac{1}{k} \sum_{j=1}^{k} b_j.$$
 (6)

Доказательство. Необходимость. При $w=\mathbb{O}$ целевая функция задачи (3) принимает вид

$$(1+\gamma)_+ + (1-\gamma)_+$$
.

Её минимальное значение равно 2 и достигается при всех $\gamma \in [-1, 1]$. Значит, $\mu = 2$.

По условию задача (4) имеет решение, и мы только что установили, что минимальное значение её целевой функции равно 2. Воспользуемся критерием оптимальности для задачи линейного программирования (см., например, [2, с. 27]), согласно которому совместна система

$$\sum_{i=1}^{m} u_i + \sum_{j=1}^{k} v_j = 2; \tag{7}$$

$$\sum_{i=1}^{m} u_i \, a_i - \sum_{j=1}^{k} v_j \, b_j = \mathbb{O}; \tag{8}$$

$$-\sum_{i=1}^{m} u_i + \sum_{j=1}^{k} v_j = 0; (9)$$

$$0 \leqslant u_i \leqslant \frac{1}{m}, \ i \in 1: m; \quad 0 \leqslant v_j \leqslant \frac{1}{k}, \ j \in 1: k.$$
 (10)

Из (7) и (9) следует, что

$$\sum_{i=1}^{m} u_i = 1, \qquad \sum_{j=1}^{k} v_j = 1.$$

Принимая во внимание (10), заключаем, что все u_i равны $\frac{1}{m}$ и все v_j равны $\frac{1}{k}$. Теперь формула (8) становится эквивалентной (6).

Достаточность. Запишем задачу, двойственную к (4):

$$\sum_{i=1}^{m} u_i + \sum_{j=1}^{k} v_j \to \max$$

при ограничениях (8)–(10). В силу (6) набор $u_i \equiv \frac{1}{m}$, $v_j \equiv \frac{1}{k}$ является планом этой задачи. Значение целевой функции на нём равно 2.

Вместе с тем, на плане

$$w = \mathbb{O}, \quad \gamma = 0, \quad y_i \equiv 1, \quad z_j \equiv 1$$
 (11)

задачи (4) значение целевой функции также равно 2. Отсюда следует, что план (11) задачи (4) с $w=\mathbb{O}$ является оптимальным.

4°. Переходим к доказательству предложения 2.

Возьмём решение задачи (4), и пусть оказалось, что у него $w = \mathbb{O}$. В этом случае $\mu = 2$ и выполняется соотношение (6). Покажем, что задача (4) имеет другое решение с $w \neq \mathbb{O}$.

Зафиксируем ненулевой вектор $h \in \mathbb{R}^n$ и рассмотрим систему линейных соотношений

$$-\frac{1}{m}\sum_{i=1}^{m}y_{i} - \frac{1}{k}\sum_{j=1}^{k}z_{j} = -2;$$

$$\langle w, a_{i} \rangle - \gamma + y_{i} \geqslant 1, \quad i \in 1 : m;$$

$$-\langle w, b_{j} \rangle + \gamma + z_{j} \geqslant 1, \quad j \in 1 : k;$$

$$y_{i} \geqslant 0, \quad i \in 1 : m; \quad z_{j} \geqslant 0, \quad j \in 1 : k;$$

$$-\langle h, w \rangle > 0.$$

$$(12)$$

Предложение 2 будет доказано, если удастся установить, что система (12) совместна.

Допустим противное. Несовместность системы (12) означает, что у задачи линейного программирования

$$\langle h, w \rangle \to \min$$

ограничения которой составляют условия (12) без строгого неравенства, минимальное значение целевой функции равно нулю. По критерию оптимальности для задачи линейного программирования совместна система

$$\sum_{i=1}^{m} u_i + \sum_{j=1}^{k} v_j - 2\zeta = 0; \tag{13}$$

$$\sum_{i=1}^{m} u_i a_i - \sum_{j=1}^{k} v_j b_j = h;$$
(14)

$$-\sum_{i=1}^{m} u_i + \sum_{j=1}^{k} v_j = 0; (15)$$

$$0 \leqslant u_i \leqslant \frac{1}{m} \zeta, \ i \in 1: m; \quad 0 \leqslant v_j \leqslant \frac{1}{k} \zeta, \ j \in 1: k.$$
 (16)

Но данная система совместна только при $h=\mathbb{O}$. Это очевидно в случае $\zeta=0$. Если же $\zeta>0$, то в силу (13) и (15)

$$\sum_{i=1}^{m} u_i = \zeta, \qquad \sum_{j=1}^{k} v_j = \zeta.$$

На основании (16) заключаем, что $u_i \equiv \frac{1}{m} \zeta$, $v_j \equiv \frac{1}{k} \zeta$. Согласно (6) формула (14) принимает вид

$$h = \zeta \left(\frac{1}{m} \sum_{i=1}^{m} a_i - \frac{1}{k} \sum_{j=1}^{k} b_j\right) = \mathbb{O}.$$

Таким образом, система (13)–(16) совместна только при $h = \mathbb{O}$, а должна быть совместной при фиксированном ненулевом векторе h. Полученное противоречие завершает доказательство предложения 2.

Отметим, что в качестве h можно брать произвольный ненулевой вектор из \mathbb{R}^n .

 $\mathbf{5}^{\circ}$. Допустим, что мы нашли решение $\{w,\gamma\}$ задачи (3) с $w \neq \mathbb{O}$. При фиксированном w целевая функция этой задачи представляет собой выпуклую ломаную $\varphi(\gamma)$. Минимальное значение ломаной может достигаться на целом отрезке $[\gamma_*,\gamma^*]$. Чтобы определить такой отрезок, достаточно вычислить значения $\varphi(\lambda)$ в узлах $\gamma=\langle w,a_i\rangle-1,\ i\in 1:m,$ и $\gamma=-\langle w,b_j\rangle-1,\ j\in 1:k.$ Некоторая свобода при выборе параметра γ позволяет получить приближённое разделение множеств \mathcal{A} и \mathcal{B} с дополнительными свойствами.

ЛИТЕРАТУРА

- 1. Bennett K. P., Mangasarian O. L. Robust linear programming discrimination of two linearly inseparable sets // Optimization Methods and Software. 1992. Vol. 1. P. 23–34.
- 2. Гавурин М. К., Малозёмов В. Н. Экстремальные задачи с линейными ограничениями. Л.: Изд-во ЛГУ, 1984. 176 с.